Big data analytics technology: disruptive and important?

Of all the disruptive technologies we track, big data analytics is the biggest. It’s also among the haziest in terms of what it really means to supply chain. In fact, its importance seems more to reflect the assumed convergence of trends for massively increasing amounts of data and ever faster analytical methods for crunching that data. In other words, the 81percent of all supply chain executives surveyed who say big data analytics is ‘disruptive and important’ are likely just assuming it’s big rather than knowing first-hand.

Does this mean we’re all being fooled? Not at all. In fact, the analogy of eating an elephant is probably fair since there are at least two things we can count on: we can’t swallow it all in one bite, and no matter where we start, we’ll be eating for a long time.

So, dig in!

Getting better at everything

Searching SCM World’s content library for ‘big data analytics’ turns up more than 1,200 citations. The first screen alone includes examples for spend analytics, customer service performance, manufacturing variability, logistics optimisation, consumer demand forecasting and supply chain risk management.

Read more at Big data analytics technology: disruptive and important?

Share your opinions regarding this topic in the comment box below and subscribe us for more updates.

Share on FacebookShare on Google+Share on LinkedInTweet about this on TwitterEmail this to someone

How Big Data And Analytics Are Transforming Supply Chain Management

Supply chain management is a field where Big Data and analytics have obvious applications. Until recently, however, businesses have been less quick to implement big data analytics in supply chain management than in other areas of operation such as marketing or manufacturing.

Of course supply chains have for a long time now been driven by statistics and quantifiable performance indicators. But the sort of analytics which are really revolutionizing industry today – real time analytics of huge, rapidly growing and very messy unstructured datasets – were largely absent.

This was clearly a situation that couldn’t last. Many factors can clearly impact on supply chain management – from weather to the condition of vehicles and machinery, and so recently executives in the field have thought long and hard about how this could be harnessed to drive efficiencies.

In 2013 the Journal of Business Logistics published a white paper calling for “crucial” research into the possible applications of Big Data within supply chain management. Since then, significant steps have been taken, and it now appears many of the concepts are being embraced wholeheartedly.

Applications for analysis of unstructured data has already been found in inventory management, forecasting, and transportation logistics. In warehouses, digital cameras are routinely used to monitor stock levels and the messy, unstructured data provides alerts when restocking is needed.

Read more at How Big Data And Analytics Are Transforming Supply Chain Management

Share on FacebookShare on Google+Share on LinkedInTweet about this on TwitterEmail this to someone

How data science and supply chain management are driving the predictive enterprise

DHL, the world’s leading logistics company, today launched its latest white paper highlighting the untapped power of data-driven insight for the supply chain. The white paper has revealed that most companies are sitting upon a goldmine of untapped supply chain data that has the ability to give organizations a competitive edge. While this wealth of supply chain data already runs the day-to-day flow of goods around the world, the white paper has revealed a small group of trailblazing companies are utilizing this data as a predictive tool for accurate forecasting.

“The predictive enterprise: Where data science meets supply chain” is a white paper by Lisa Harrington, President of the lharrington group LLC that was commissioned by DHL to identify the opportunities available to companies to anticipate and even predict the future. It encourages companies to get ahead of their business and direct their global operations accordingly.

Data mining, pattern recognition, business analytics, business intelligence and other tools are coalescing into an emerging field of supply chain data science. These new intelligent analytic capabilities are changing supply chains – from reactive operations, to proactive and ultimately predictive operating models. The implications extend far beyond just reinventing the supply chain. They will help map the blueprint for the next-generation global company – the insight-driven enterprise.

Jesse Laver, Vice President, Global Sector Development, Technology, DHL Supply Chain, said, “At DHL, we’re helping our customers get ahead of the competition by working with them to harness the wealth of data information from across their businesses, allowing us to develop smarter supply chain solutions that factor in their wider business operations. For our technology customers, we use data analytics to predict what’s going on in the supply chain, such as what products are in high demand, so we can tailor our solutions accordingly.”

Read more at One step ahead: How data science and supply chain management are driving the predictive enterprise

Please share your opinions in the comment box, and subscribe to get updates in your inbox.

Share on FacebookShare on Google+Share on LinkedInTweet about this on TwitterEmail this to someone

External Insights Critical to Effective Supply Chain Performance

Traditional forecasting models that leverage historical data to predict future performance are the tools used by most supply chain executives to plan critical functions, yet these predictions are frequently inaccurate. In fact, research from KPMG International, in cooperation with the Economist Intelligence Unit, shows that most quarterly forecasts are off by 13 percent—meaning that supply chain managers are basing their decisions for ordering materials and scheduling distribution on erroneous projections. The result can mean surpluses or shortages, potentially costing companies millions either way.

There is a better way to anticipate supply chain demands—one that can vastly improve projections, and decrease the discrepancies between forecasting and reality, therefore helping supply chain executives perform their jobs more effectively. Few companies take into account macroeconomic factors, global manufacturing activity, consumer behavior, online traffic, weather data, etc. when making business projections. Yet companies that do identify leading performance indicators using such external data earn more than a 5 percent higher return on equity than those that use only internal metrics. Leveraging external factors, in addition to internal performance measures, is proven to result in more accurate, effective forecasts. Not to mention that improving forecast accuracy can represent huge bottom-line benefits. For a billion dollar manufacturing company, for example, improving forecast accuracy and overall return on equity even 1 percent can equal a $3 million increase in net income.

Forecasting accuracy, improved through external factors, benefits multiple business functions—from financial operations (shareholder value) to human resources (adequate staffing) to marketing (product innovation)—but is especially impactful on the supply chain management function.

Improves Inventory Management

Improved forecast accuracy using external drivers equates to reduced inventory management costs, ultimately improving bottom-line profit. By accounting for external factors, companies can see a 10 to 15 percent improvement in forecast accuracy, significantly decreasing the cost of excess inventory. By ordering raw materials based on correct projections, supply chain managers no longer have to worry about discounts necessary to move excess inventory or the cost of warehousing excess materials because they are ordering accurately from the start.

Read more at External Insights Critical to Effective Supply Chain Performance

Share your opinions with us in the comment box. Thanks for reading.

Share on FacebookShare on Google+Share on LinkedInTweet about this on TwitterEmail this to someone